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The reaction of aqueous solutions of Na2PdCl4 and K3Co(CN)6 results in gelatinous
polymeric materials, characterized by bridging cyanides between the central metals of the
adducts. Such materials are referred to as cyanogels. A mechanical perturbation method,
three-point beam-bending, was used to measure the viscoelastic relaxation behavior and
permeability of a series of Pd/Co cyanogels of differing concentrations. The shear and Young’s
modulii of the cyanogel network was found to increase with an increase in concentration.
Permeability was found to decrease with an increase in concentration, and was found to
range from 239 to 3.67 nm2 over the concentration range 0.175-0.600 M. This suggests
that the Pd/Co cyanogel contains an average pore structure size with the radii ranging from
40 to 5 nm over the concentration range investigated.

Introduction

Solution sol-gel processing, the formation of a gel
from a reaction involving molecular precursors followed
by the removal of solvent, has become a ceramic
processing technique for the formation of oxide-based
ceramics.1 Via sol-gel processing, one has the ability
to control and predict the properties of the bulk product
by manipulating the molecular properties of the precur-
sors. To implement such a synthetic strategy, the
relationship between the sol properties and the bulk
properties of the resulting gel must be understood.1 For
the case of silica-based gels, it has been shown2 that
the mechanical properties and permeabilities of the gel
can be obtained from a simple three-point bending
experiment. When a gel beam is deflected in a three-
point bending experiment, two types of relaxation
processes occur. The first, hydrodynamic relaxation, is
caused by the flow of liquid within the gel network, and
the second, viscoelastic relaxation, is related to the
polymer network itself. The total relaxation is found
to be approximately equal to the product of the hydro-
dynamic and viscoelastic relaxation functions.2 By
immersing a beam of an aqueous gel in a water bath,
bending it to a constant deflection, and measuring the
load on the gel as a function of time, it is possible to
determine the permeability, as well as the elastic

modulus and Poisson’s ratio of the gel network.3 The
permeability obtained by beam bending has been shown3
to be the same as that obtained by a previously
described thermal expansion method4 or by direct flow
measurements5 (although the latter method is much
more difficult and less accurate). Moreover, the pore
size deduced from the permeability (measured by beam
bending) agrees well with sizes determined by nitrogen
desorption.6,7

We have recently reported that aqueous solutions of
the square-planar complex K2PdCl4 and KxM(CN)n
[where n ) 4-8 and M is a transition metal] react to
form gelled polymeric materials as indicated by eq 1:8

The product polymer is characterized by bridging cya-
nides between the Pd(II) and M metal centers forming
a star-polymer system as illustrated by the Pd/Co
polymer system in Figure 1.9 If we consider one Co
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2x[PdCl4]
2- + x[M(CN)6]

n- f

[(CN)4M(CN)2-{trans-PdCl2}2]x
n- + 4xCl- (1)
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metal as a center of the star, then six cyanide bridges
would be formed. Polymerization occurs via substitu-
tion of two chloride ligands, trans to each other, on the
Pd(II) centers by the nitrogen end of the cyanide ligand
to generate the extended bridging cyanide structure
shown in the Figure.9 Because the bridging cyanide
ligand framework is central to these gels and distin-
guishes them from classic metal-oxo gels, we refer to
them as cyanogels.
The thermal chemistry of cyanogels has been shown

to exhibit a high degree of synthetic versatility allowing
for a variety of well-defined solid-state products ranging
from metal alloys to oxide ceramics and semiconduc-
tors.10,11 Here we report on the mechanical properties
of the Pd/Co cyanogel; a system that has a well-defined
processing chemistry to produce alloy and ceramic
products.11 From the response of the gel to a bending
perturbation, we deduce the permeability of the gel, bulk
attributes of the gel’s pore structure, and the funda-
mental bulk mechanical constants associated with gel
polymer structure.

Experimental Section

To make a series of cyanogel “beams”, equimolar aqueous
solutions of Na2PdCl4 and K3Co(CN)6 (in concentrations rang-
ing from 0.175 to 0.600 M) were mixed in a 2:1 volume ratio
(Na2PdCl4 solution to K3Co(CN)6 solution) and the mixed
solution poured into a glass tube (12.5 mm i.d.) mold. Both
starting materials were reagent grade, obtained from either
Alfa or Aldrich, and were used as received. To make cyanogel

beams of concentrations 0.450 M and higher, the solutions
were first placed in an ice bath and chilled to 0 °C to prevent
premature gelling of the mixed solutions. Gel beam samples
were allowed to age for 1 week at 9 °C in the glass mold.
During this time a small amount of water was expelled from
the beam and the beam diameter decreased ∼20% allowing it
to be easily removed from the mold. After the aging period,
further variation in the physical dimensions of the gel were
not noted. Upon removal from the mold, the beams were
placed in a deionized water bath at room temperature. The
water was changed daily for approximately 4 days to remove
excess salts from the gels. When the addition of a 0.5 M silver
nitrate solution to the bath no longer formed a precipitate,
indicating no free chloride, this treatment was suspended. This
process was carried out since excess salt not directly associated
with the cyanogel polymer would cause the flow of liquid
through the gel beam to be controlled by osmotic properties
instead of by the induced mechanical perturbation of the beam.
The gel beams produced were generally of 70-80 mm in length
and 10-10.5 mm in diameter. Previous work3 has shown that
a length/diameter ratio exceeding ∼7 gives purely extensional
behavior for a gel in bending.
To carry out the beam bending experiment the gel beams

were supported at the ends on Teflon roller supports that
prevented the development of axial tension or additional
moments in the samples. A container with a capacity of ∼750
mL was cut from a block of Teflon, and the end supports were
secured to the bottom of the container with stainless steel
screws. After the container was filled with deionized water
at room temperature, the gel beam was placed onto the end
supports, and an aluminum pushrod was brought into contact
with the gel at its midpoint as illustrated in Figure 2. The
diameters of the supports and pushrod were 6 mm.
The pushrod was lowered onto the gel rod at a constant

speed (∼0.025 mm/s) to induce a deflection in the cyanogel
beam.3 This method was used, rather than sudden deflection,
because some of the gels were so soft that rapid deflection
caused inconvenient oscillations in the gel. The total deflection
imposed was sufficiently small enough so that the maximum
strain in the gel was <1% except in the case of the 0.175 M
gel which had a maximum strain of ∼2%. A screw driven by
an Oriel motorized precision translator (Model 16128, with
Model 18008 controller) controlled the pushrod position. The
load, W(t), required to sustain the deflection was recorded
using a Sensotech load cell (Model 31/1435-01 with Model GM
signal conditioner). The beam was generally deflected 0.7-
1.7 mm. Data were recorded at a rate of∼8 points/s, digitized,
and collected using equipment described previously.3 Table 1
indicates the experimental samples utilized, providing the
number of samples evaluated and the number of recorded
deflections per sample. Good reproducibility was obtained
from sample to sample at fixed cyanogel concentration. All
data were T-tested. Standard error (provided in Table 2) was
utilized to monitor the random error.

(9) Heibel, M. Sol-Gel Chemistry of the New Inorganic Polymers-
Cyanogels. Ph.D. Thesis, University of Ljubljana, 1996.

(10) Heibel, M.; Kumar, G.; Wyse, C.; Bukovec, P.; Bocarsly, A. B.
Chem. Mater. 1996, 8, 1504-1511.

(11) Bocarsly, A. B.; Kumar, G.; Heibel, M.Mater. Res. Soc. Symp.
Proc. 1994, 346, 89-93.

Figure 1. Proposed star polymer structure of cyanogel
polymer network.

Figure 2. Schematic illustration of three-point bending
fixture: Gel beam with radius R rests on supports a distance
L apart while immersed in a bath of water. A deflection ∆ is
gradually imposed at the midpoint of the bar, and the force
exerted by the gel on the pushrod is measured as a function
of time.
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Bulk density (Fb) measurements (see Table 1) of the gel
polymer were obtained by measuring the dimensions of the
gel beams with Mitutoyo Digimatic calipers. Beams were then
dehydrated by drying in an oven at 95 °C, and the mass of
the xerogel was determined using a Mettler H31AR balance.
Helium pycnometry measurements on the xerogel, to measure
the skeletal density (Fs) of the polymer network, were per-
formed with a Micromeritics Accupync 1330 helium pycnom-
eter.
Aerogels were made by first exchanging the water within

the pores of the gel with acetone. The acetone-impregnated
gel beams were then placed in a computer-controlled CO2-
drying autoclave, and the acetone was then exchanged with
liquid CO2. To ensure that all acetone was exchanged, the
autoclave was flushed five times with CO2. The autoclave was
brought up to 9 MPa and 45 °C to extract the then supercritical
CO2 from the gel beams. During the extraction process, the
gel beam diameter shrank∼20%. Imaging of the aerogels was
accomplished with a Philips XL30 FEG scanning electron
microscope (SEM).

Theory

Determination of the modulus of a gel requires
consideration of the movement of liquid in the pores
under an applied load.4,13 Part of the applied load is
supported by the liquid, and part by the solid network,
when a gel is deformed. To measure the properties of
the solid phase, the load must be sustained until the
flow of liquid allows the pressure in the liquid to drop
to zero, and the load to be transferred entirely to the
solid network. When a fully hydrated gel is deformed,
the liquid cannot instantly flow out of the network, so
the gel behaves as if it were incompressible. Consider
the application of an instantaneous strain imposed on

a free-standing gel beam perpendicular to the beam axis
(the perpendicular axis is defined as the z axis), the
associated movement of the liquid will stretch the
network in the x and y directions such that no net
change in volume of the gel occurs under the incom-
pressibility assumption. This ratio of the applied stress
to the instantaneous strain in the z direction is the shear
modulus of the network, G. However, if the strain is
sustained long enough, the liquid flows from the net-
work into the bath. This continues until the pressure
differential between the liquid in the gel and in the bath
goes to zero; then, as in a normal elastic body, the
uniaxial stress produces a dialation of the body. The
ratio of the stress to the final uniaxial strain yields E,
Young’s modulus. The time constant for this relaxation
depends on the permeability of the network to the flow
of liquid in the gel pores.12

As illustrated in Figure 2, when the gel beam is
deflected by the pushrod, the top portion of the gel is
compressed and the bottom portion of the gel is stretched.
Consequently, a compressive load is placed on both the
liquid phase of the gel and the polymer phase of the gel
which is adjacent to the pushrod, while the polymer
network and the internal gel liquid are placed in tension
below the beam axis. In principle, the elastic modulus
of the gel might be different in tension and compression,
whereas our analysis assumes that it is the same.
Recent work on silica aerogels14 has shown that the
same modulus is obtained in tension and compression,
even at strains much larger than those used in our
study. In the present study, the sample diameter was
sufficently small so that the deformation was pure
bending, and the strain was therefore proportional to
the deflection. If the deflection is held constant, the
internal liquid flows through the polymer network and
between the network and the bath until the pressure
differential in the internal gel liquid goes to zero, and
all of the load is transferred to the solid network
polymer of the gel. As the liquid flows, the measured
load decreases. The kinetics of load decay can be
analyzed to determine the permeability and elastic
modulus of the gel;3 if the gel is viscoelastic, the relax-
ation function can also be determined.15 In our experi-
ments, the strain was maintained at a small enough
level to assume that the modulus was not affected by
the deformation. It has been shown that relaxation of
the load proceeds in two steps: first, the flow of the
liquid (called hydrodynamic relaxation) reduces the
load, typically by ∼20%, and then, over a much longer
period of time, viscoelastic relaxation of the polymeric
gel network allows the load to drop gradually toward
zero.2,11 In the following analysis, we ignore flow of
liquid along the axis of the beam, since the utilized
beams were much longer than their diameter; thus,
virtually all of the flow is normal to the gel beam axis.3

The movement of liquid through a porous body,
including polymeric gels, has been reported5,16 to obey
Darcy’s law,17 which states that the flux (J) is propor-
tional to the pressure gradient in the liquid:

(12) Scherer, G. W. J. Sol-Gel Sci. Technol. 1994, 1, 285.
(13) Scherer, G. W. J. Non-Cryst. Solids 1989, 109, 183-190.

(14) Hafidi, A.; Woignier, W.; Phalippou, J.; Scherer, G. W.; Hiki,
A. Comparison Between Flexural and Uniaxial Compression Tests to
Measure the Elastic Modulus of Silica Aerogel, manuscript in prepara-
tion.

(15) Scherer, G. W. J. Sol-Gel Sci. Technol. 1994, 2, 199-204.
(16) Tokita, M.; Tanaka, T. J. Chem. Phys. 1991, 95, 4613-4619.

Table 1. Cyanogel Beam Sample Pool

concna
(M)

Fbb
(g/cm3)

total no. of
samples run

no. of
runs

0.175 0.0413 1 2
0.225 0.0577 3 5
0.250 0.0673 4 6
0.300 0.0798 3 5
0.350 0.0914 3 5
0.400 0.102 3 5
0.450 0.118 2 4
0.500 0.129 2 4
0.550 0.137 2 4
0.600 0.150 2 3

a Concentration of inital solutions used in synthesizing the
cyanogel. b Bulk density of cyanogel.

Table 2. Fitting Parameters for Eq 16

concn
(M)

τba
(s) νb

τVEc
(s × 1000) bd

standard
errore

0.175 2950 0.167 11.7 0.8506 0.00099
0.225 1460 0.197 11.8 0.7771 0.00031
0.250 965 0.149 14.2 0.7354 0.00040
0.300 641 0.191 15.3 0.8724 0.0015
0.350 566 0.178 17.5 0.8663 0.0099
0.400 589 0.161 17.6 0.8482 0.0046
0.450 530 0.168 19.9 0.8019 0.0040
0.500 466 0.194 24.7 0.8571 0.0069
0.550 497 0.164 24.1 0.8145 0.0076
0.600 457 0.166 22.4 0.8191 0.0078
a Hydrodynamic relaxation time. b Poisson’s ratio. c Viscoelastic

relaxation time. d Distribution breadth. e Standard error of fitted
curves.
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where ηL is the viscosity of the pore liquid and D is the
permeability (which has units of area). By analogy to
Poiseuille’s law for flow through a pipe, D is predicted
to be proportional to the porosity (φ) of the body and
the square of the mean pore size (r):

where κ is a constant that accounts for the tortuosity of
the pores. Porosity can also be defined as 1 - F, where
F is the relative density (F ) Fb/Fs). Since the pores in
the network are expected to be small, even though the
porosity is typically high, the permeability of a gel is
expected to be extremely low. An equivalent way to
understand the permeability of a gel is to recognize that
resistance to flow results from friction between the
network and the liquid, and the huge interfacial area
of the gel creates enormous friction.
Biot developed a theory to describe the response of a

porous, partially saturated medium to applied loads.18-20

For an isotropic gel in which the solid network is
linearly elastic, Biot showed that the axial strain (εx)
could be written in terms of the principal total stresses
(σx, σy, σz) as21

where P is the stress in the liquid (equal to the pressure,
but opposite in sign). The quantities E and ν represent
the properties that one would measure if the liquid were
drained from the pores; ν is Poisson’s ratio for the
network, and E is Young’s modulus. The total stresses
represent the sum of forces on the liquid and solid
phases on a cross section divided by the area of the
section.22
Sudden deflection of very soft gels, such as those

under study here, in three-point bending can cause
oscillations that confound the measurement of stress
relaxation. The oscillations can be avoided by using a
constant deflection rate, rather than a sudden deflec-
tion; then the permeability and elastic properties of the
gel can be obtained by analyzing the applied force as a
function of time. This problem was solved previously
for the case of a gel with an elastic network.3,23 When
the solid network is viscoelastic, the most convenient
method for solving a problem of this kind is to use the
Laplace transform with respect to time, t:24

If a stress analysis has been done for an elastic material,
then the viscoelastic analogy states that the correspond-
ing solution for a viscoelastic material can be found

directly from the elastic solution.25 This is done by
replacing the elastic stresses, strains, and moduli in the
elastic equations with the Laplace transforms of the
corresponding viscoelastic quantities, and then inverting
the transform. This approach was used in ref 2 to deter-
mine the relaxation behavior of a viscoelastic gel sub-
jected to a sudden fixed deflection. An important as-
sumption made is that the Poisson’s ratio of the network
does not relax. The rationale for this assumption is that
Poisson’s ratio (ν) depends on the structure of the net-
work, rather than the properties of the solid; therefore,
even if the Poisson’s ratio of the solid phase changes
from ∼0.2 (characteristic of the elastic solid) to 0.5
(characteristic of a liquid) as the gel relaxes, ν of the
network will remain the same, as long as the architec-
ture of the network is not significantly altered. In this
case, the transform of Young’s modulus is written as

where ψVE is the viscoelastic relaxation function and E
is the instantaneous Young’s modulus of the gel net-
work.
In the following, we adapt the solution from ref 2 to

the case of a gel subjected to a certain rate of deflection,
∆̇. The starting point for this analysis is eq 17 of ref 2:

where ε is the volumetric strain of the network. This
equation simply states that the rate of contraction of
the gel in any local region is equal to the net flux of the
liquid out of that region. Using the form of the Lapla-
cian operator appropriate for cylindrical coordinates, eq
7 becomes

where r and φ are cylindrical coordinates, a is the radius
of the gel rod, and u ) r/a. The strain rate is given by
eq 6 of ref 23:

where z is the axial coordinate, L is the distance
between supports under the bar of gel, and G is the
instantaneous shear modulus. The Laplace transform
of eq 9 is

so the transform of eq 8 becomes

(17) Happel, T.; Brenner, H. Low Reynolds Number Hydrodynamics;
Martinus Nijhoff: Dordrecht, 1983.

(18) Biot, M. A. J. Appl. Phys. 1941, 12, 155-164.
(19) Biot, M. A. J. Appl. Phys. 1954, 25, 1385-1391.
(20) Biot, M. A. J. Appl. Phys. 1962, 33, 1482-1498.
(21) Scherer, G. W. Langmuir 1996, 12, 1109-1116.
(22) Scherer, G. W. J. Non-Cryst. Solids 1989, 109, 171-182.
(23) Scherer, G. W. J. Non-Cryst. Solids 1996, 201, 1-25.

(24) Hildebrand, F. B. Methods of Applied Mathematics, 2nd ed.;
Prentice Hall: Englewood Cliffs, NJ, 1962.

(25) Scherer, G. W. Relaxation in Glass and Composites; Wiley:
New York, 1986; Krieger: Malabar, FL, 1992.

J ) -D
ηL
∇p (2)

D ) φr2/4κ (3)

εx ) 1
E
[σx - ν(σy + σz)] +

(1 - 2ν)P
E

(4)

f̃(x, s) ≡ ∫0∞ exp(-st)f(x, t) dt (5)

Ẽ ) Eψ̃VE (6)

sε̃ ) - D
ηL
∇2P̃ (7)

1
u
∂

∂u(u∂P
∂u) + 1

u2
∂
2P
∂φ

2
) -(ηLa

2

D )∂ε
∂t

(8)

∂ε

∂t
) -

24(1 - 2ν)r sin(φ)z

L3
∂∆
∂t

- 1 - 2ν
G

∂P
∂t

(9)

sε̃ ) -(24(1 - 2ν)azs∆̃

L3 )u sin(φ) -
2(1 + ν)(1 - 2ν)sP̃

sẼ
(10)

1
u
∂

∂u(u∂P̃∂u) + 1
u2
∂
2P̃
∂φ

2
- c1P̃ ) c2u sin φ (11)
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where

The formal solution to eq 11 is

where J0 and J1 are Bessel functions of the first kind of
order 0 and 1, respectively, and Bn is a root of J1, J1-
(Bn) ) 0. The hydrodynamic relaxation time (τb), the
characteristic time for fluid flow within the gel beam,
is defined by

The transform of the force, W, exerted on the gel by
the pushrod to maintain a displacement of ∆ is given
by eq 15 of ref 2:

where I is the moment of inertia of the gel rod; for a
cylinder of radius a, I ) πa4/4. Inserting eq 13 into eq
15 and inverting the transform leads to

where

and

It was shown in ref 2 that eq 17 is represented quite
accurately by

where R is a function describing the hydrodynamic
relaxation of a gel rod with an elastic network

and ψVE is the viscoelastic relaxation function which
describes the kinetics of uniaxial stress relaxation under
constant strain. The value ψVE cannot be calculated
from first principles;21 for the purposes of fitting the
data, it is convenient to use a stretched exponential
function, which has been shown to fit a wide variety of

relaxation processes:25

where b is a constant (0 e b e 1) and τVE is the
viscoelastic relaxation time. Thus, the load on the
viscoelastic gel can be found by evaluating eq 16 with
Ω given by eq 19. The fitting parameters are τb, ν, b,
and τVE.
The pushrod and end supports dent the gel signifi-

cantly,23 so eq 16 should be modified by replacing ∆ with
∆ - δ, where δ is the depth of the indentation:

The indentation depth can be calculated from eq 59 of
ref 21 (with c0 in eq 59 replaced by c from eq 67 of that
paper).26
From the initial load on and deflection of the gel

beam, the shear modulus (G), the ratio of shear stress
to strain, can be calculated; then Young’s modulus, E,
is computed using G

With the fitted value of ν,the longitudinal modulus can
also be determined. The fitted value of τb from eq 20
can be used with eq 14 to calculate permeability of the
gel.

Results

A typical relaxation curve, along with the least-
squares fit of the data, is shown in Figure 3. The first
part of the load decay (extending to∼500 s) results from
hydrodynamic relaxation, as liquid flows within the gel,
and between the gel and the bath. The subsequent slow
relaxation is the viscoelastic response of the cyanogel
network to the applied strain. Average fitting param-
eters for the cyanogel concentrations explored are shown
in Table 2. The exponent, b, is constant and close to 1,
so the viscoelastic relaxation function is nearly a simple
exponential.
The permeability of a gel, a measure of fluid flow

through the gel, controls its response to mechanical
loads.1 The permeability (D) was calculated from eq 14

c1 ≡ (ηLa
2

D )2(1 + ν)(1 - 2ν)
Ẽ

c2 ≡ (ηLa
2

D )(24az(1 - 2ν)

L3 )s∆̃ (12a,b)

P̃ ) (24azGL3 )(sin φτb )∑n)1

∞ 2J1(Bnu)

BnJ0(Bn)( s∆̃

1/ψ̃VE + Bn
2/τb) (13)

τb )
(1 - 2ν)ηLa

2

DG
(14)

W̃ ) 48∆IẼ
L3

-
2(1 -2ν)

z ∫0a ∫02π
P̃r2 sin φ dr dφ (15)

W(t) ) 144GI
L3 ∫0tΩ(t - t ′)∂∆

∂t ′ dt ′ (16)

Ω(t) )
2(1 + ν)

3
ψVE(t) +

8(1 - 2ν)

3
∑
n)1

∞ gn(t)

Bn
2

(17)

gn(t) ≡ 1
1/ψ̃VE + Bn

2/τ
(18)

Ω(t) ≈ R(t)ψVE(t) (19)

R(t) )
2(1 + ν)

3
+
8(1 - 2ν)

3
∑
n)1

∞ exp(-Bn
2t/τb)

Bn
2

(20)

Figure 3. Normalized load on cyanogel beam as a function
of time: (a) measured W(t)/W(0) and (b) curve fitted to eq 16.
W(0) is the load before the deflection is imposed upon the beam.

ψVE(t) ) exp[-(t/τVE)
b] (21)

W(t) ) 144GI
L3 ∫0tΩ(t - t ′)

∂(∆ - δ)
∂t ′ dt ′ (22)

E ) 2(1 + ν)G (23)
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using the parameters listed in Table 2, and assuming
that the viscosity of the liquid inside the gel was
identical with that of bulk water at 22 °C (ηL ) 9.54 ×
10-4 Pa‚s)27 These values are given in Table 3 along
with average permeability and moduli data. Helium
pycnometry measurements on three different xerogel
samples yielded a skeletal density (Fs) of the gel of 2.26
( 0.03 g/cm3. The relative density of the gels (F ) Fb/
Fs), a measure of how porous the gel framework is, can
be determined using the skeletal density and is listed
in Table 4.

Discussion

Viscoelastic relaxation in gels is attributed to attack
by the pore liquid on the bonds that constitute the
network. For example, in silica gels, it has been
determined that the viscoelastic effect results from
chemical attack (hydrolysis) by water on strained si-
loxane bonds in the network.15,28,29 For the cyanogel
polymeric network, viscoelasticity presumably occurs
due to the metal centers undergoing ligand exchange
between the strained bridging cyanide bonds and water,
allowing the network to relax. The viscoelastic response
time increases with the higher concentration samples
because the stress concentration on the load-bearing
polymeric network is greater in the lower concentration
gels, where there is less of a framework to support the
load, than in the higher concentration gels. With the

greater strain applied to the lower concentration cy-
anogel network, the rate of ligand exchange should be
higher. It has been demonstrated in recent experiments
that chemical attack does occur preferentially on strained
siloxane bonds in silica gels.6 The shape of the vis-
coelastic relaxation function as reflected in the value of
b in the stretched exponential function is invariant
within experimental error with the gel density.

Figure 4 shows that shear (G) modulus varies with
bulk density (Fb) according to a power law:

wherem is curve fit to a value of 2.9. G0 and F0 are the
values of the shear modulus and bulk density of the
samples under normal conditions. Analogous behavior
is observed for Young’s modulus, as also illustrated in
Figure 4. A power-law dependence of modulus on
density has been reported to apply to a wide variety of

(26) Software for performing the curve fitting is available from the
author.

(27) CRC Handbook of Chemistry and Physics, 62 ed.; Weast, R.
C., Astle, M. J., Eds.; CRC Press: Boca Raton, FL, 1981; p F-42.

(28) Scherer, G. W. Faraday Discuss. 1995, 101, 225-234, 287-
291.

(29) Sharp, K. G.; Scherer, G. W. J. Sol-Gel Sci. Technol. 1997, 8,
165-171.

Table 3. Cyanogel Moduli and Permeability

concn (M) Ga (MPa) Eb (MPa) Hc (MPa) Dd (nm2)

0.175 0.0630 0.147 0.157 239 ( 11
0.225 0.123 0.291 0.324 164 ( 5.7
0.250 0.286 0.650 0.670 113 ( 4.3
0.300 0.418 0.968 1.07 72.8 ( 3.8
0.350 0.591 1.37 1.53 43.0 ( 2.9
0.400 0.887 2.02 2.14 35.7 ( 2.7
0.450 1.18 2.94 3.57 24.5 ( 2.5
0.500 1.64 3.91 4.30 16.6 ( 2.0
0.550 1.99 4.62 4.97 7.44 ( 1.36
0.600 2.36 5.36 5.66 3.67 ( 1.12
a Shear modulus. b Young’s modulus. c Longitudinal modulus.

d Cyanogel permeability ( one standard deviation unit.

Table 4. Cyanogel Permeability Parameters

concn
(M) Fb/Fsa κω

b
rω

c

(nm)
Vp

d

(cm3/g)
ηL/De

(dyn‚s/cm4)

0.175 0.0183 1.68 40.4 ( 3.7 23.8 3.99 × 109
0.225 0.0255 1.77 34.5 ( 2.6 16.9 3.82 × 109
0.250 0.0297 1.82 29.1 ( 2.2 14.4 8.44 × 109
0.300 0.0352 1.88 23.9 ( 2.2 12.1 1.31 × 1010
0.350 0.0404 1.92 20.9 ( 2.0 10.5 2.22 × 1010
0.400 0.0451 1.96 17.1 ( 1.8 9.36 2.67 × 1010
0.450 0.0522 2.01 14.4 ( 1.9 8.03 3.89 × 1010
0.500 0.0567 2.04 12.0 ( 1.7 7.31 5.45 × 1010
0.550 0.0605 2.07 8.09 ( 1.42 6.86 1.28 × 1011
0.600 0.0662 2.10 5.75 ( 1.40 6.22 2.60 × 1011

a Cyanogel relative density. b Kozeny “constant”. c Mean pore
radii ( one standard deviation unit. d Pore volume per gram.
e Hydrodynamic resistance, “friction factor”.

Figure 4. Shear modulus (G) and Young’s modulus (E), found
from beam-bending experiments, fitted to power-law curve (eq
24).

Figure 5. Pore radius, rω, calculated using eqs 25 and 20
fitted to a log curve.

G ) G0(Fb/F0)
m (24)
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gels,30 but the exponent has been found to vary widely
from system to system. The physical basis for the
power-law behavior has not been established.
For many materials, the permeability can be related

by using the Carman-Kozeny equation to the mean
pore size, rω.17 The Carman-Kozeny equation was
developed for granular materials, but describes flow
through networks as well. It has been reported to be
well suited to the calculation of the permeability of
fractal networks:31

The value κω is the Kozeny “constant,” a weak
function of porosity, which is slightly dependent on Fb.

It is intended to account for the noncircular cross section
and nonlinear path of the pores in a real material.32 For
a network consisting of a random array of cylinders, κω
is given approximately by15

By using the permeability calculated from eq 14, the
mean pore size of the gel can thus be determined using
eqs 25 and 26. Contained in Table 4 are the data for
permeability parameters and calculated mean pore radii
(rω). The observed variation of pore size with bulk

(30) Gross, J.; Scherer, G. W.; Alviso, C.; Pekala, R. J. Non-Cryst.
Solids 1997, 211, 132-142.

(31) Adler, P. M. Phys. Fluids 1986, 29, 15.
(32) Scherer, G. W. J. Non-Cryst. Solids 1989, 113, 107-118.

Figure 6. SEM images of the fracture surface of aerogels made from 0.175 M (top) and 0.400 M (bottom) cyanogels. From these
images it can be concluded that the pore size measured through the beam bending experiments is comparable to the pore size
observed in the images.

rω ) [ 4Dκω

1 - Fb/Fs]
1/2

(25)

κω ≈ 1.0 + 6.05F0.5 - 8.60F + 6.58F1.5 (26)
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density and concentration is illustrated in Figure 5.
When aerogels formed from cyanogels are fractured and
imaged by SEM (Figure 6), it can be seen that the
calculated mean pore radii corresponds to the typical
pore radii found in the aerogels. Thus, the available
data indicates that the beam bending method is a
reliable method of determining the pore size within the
cyanogel system.
The low permeability of a gel is due to the friction

between the gel network and the liquid within the pores
of the gel.33 This hydrodynamic resistance between the
network and the pore liquid is a measurable quantity
known as the “friction factor” (ηL/D), and the values for
the cyanogel system are listed in Table 4. The values
are of the same order of magnitude and are comparable
to those of the poly(acrylamide) gel system.34 As with
the poly(acrylamide) gel system, by changing the con-
centration of the starting solutions by a factor of 2, the
friction factor changes by an order of magnitude.
The observed variation between the pore radius and

the pore volume per gram (Vp) is plotted in Figure . Pore
volume per gram is given by the difference of the inverse
gel density and inverse polymer density. In terms of
fundamental properties of the gel, rω is not directly
related to Vp. However, a linear dependence of pore size
on pore volume per gram has been found in several
studies of silica gel.35-37 A linear fit of rω versus Vp for
silica gives an indication of how high the relative density
of the silica gel can be before the pores close. In other
words, the final density of the gels during drying and

processing can be predicted. For the cyanogel system,
the dependence of pore size on Vp is logarithmic. If this
line is extrapolated to zero, it indicates that the relative
density of the dried cyanogel is ∼0.084 which is similar
to the density of the hydrated cyanogel and an order of
magnitude lower than the relative density of the xerogel
(0.79). Since a prediction for the densified material
should be an order of magnitude higher than the
extrapolated value, we conclude that increased cyanogel
polymer concentration does not produce a bulk structure
which is similar to the structure obtained by dehydrat-
ing the hydrogel to form a xerogel.

Conclusions

The technique of three-point beam bending has been
successfully applied to the cyanogel system to determine
hydrodynamic properties, mechanical parameters, and
pore structure. As with silica gels, cyanogels exhibit
both hydrodynamic and viscoelastic relaxation. When
comparing cyanogels and B2-type silica gels of roughly
the same density, some similarities and differences of
their physical properties are noticed.28 The moduli
(Young’s, shear, and longitudinal) are comparable,
indicating that the gels are of comparable “stiffness.”
Poisson’s ratio for the cyanogel system is a little higher
(6%) when compared to the B2-type silica gels which is
an indication that the cyanogel system is slightly more
deformable and that the strengths of the cross-links are
a little weaker. Permeability is smaller for cyanogels
(3.67 nm2 vs 21.4 nm2) than for the silica gels, indicating
a finer microstructure.5 This phenomenon is seen in
organic gels, where samples with the same quantity of
monomer, but different amounts of cross-linking agent,
have drastically different permeabilities.38 Increased
permeability in this case has been associated with
inhomogeneously distributed cross-links, creating rela-
tively open regions through which most of the liquid
flows. Based on the low permeability of the cyanogels,
therefore, it can be concluded that the structure of the
cyanogel pore network is fairly uniform. Since the
permeability decreases as the density of the cyanogel
network is increased, it can also be concluded that as
the concentration of the cyanogel is increased, more
bridging cyanide bonds are formed.

CM970571Z
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Figure 7. Pore radius (rω) versus pore volume per gram (Vp)
fitted to a log curve.
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